domingo, 28 de septiembre de 2014

SIMULADORES DE REDES

TIPOS DE SIMULADORES DE RED

NEST (Network Simulator Tesbed)
Simulador desarrollado por la Universidad de Columbia fue implementado en lenguaje C para plataformas UNIX, que cuenta con la posibilidad de que el usuario puede ejecutar sus propios comandos en dicho lenguaje, provee al usuario una simulación de redes distribuidas y protocolos básicos, posee una interfaz gráfica para el mejor análisis del resultado de la simulación (10).

MaRS (Maryland Routing Simulator)
Simulador de eventos discretos enfocado al estudio de algoritmos de ruta en redes WAN que surgió en1990 en la Universidad de Maryland y es una evolución del simulador NetSim, está escrito en lenguaje C posee dos interfaces graficas Xlib y Motif (11).

REAL (Realistic and Large Network Simulator)
Software de carácter libre desarrollado por la Universidad de Cornell cuyo objetivo principal es el de estudiar el comportamiento de flujos y el esquema de control de congestión de redes de datos packet switched, usa lenguaje en C y posee una interfaz gráfica denominada GUI. Este software de simulación no permite el estudio de sistemas o parámetros que no afecten en forma directa el flujo de conexiones TCP/IP en consecuencia es muy limitado a la hora de modelar un sistema real (12).

NCTUns 2.0 (Network Simulador/Emulador)
Desarrollado por el profesor S. Y. Wang en la Universidad de Harvard quien presento este simulador para obtener el título de PhD. en 1999.
Esta herramienta es tanto un simulador como un emulador el cual utiliza el mismo protocolo TCP/IP de la maquina donde está instalado brindando un mayor desempeño a la simulación, tiene la posibilidad de simular varias clases de redes como son las redes estructuras, WAN wireless, redes OBS entre otros, algunos de los protocolos que soporta están entre otros IEEE 802.11, IEEE 802.3, RIP, UDP, TCP.
Cuenta con una interfaz gráfica GUI la que le permite al usuario dibujar y configurar la red deseada (13).

J-SIM (Java Simulator)
Desarrollado por las Universidades de Illinois y Ohio con el patrocinio de NSF, DARPA y CISCO.
J-sim es un simulador de red escrito en Java y posee una interfaz de script para la integración de diferentes lenguajes de script como Perl, Tcl o Python.
Este simulador es muy parecido al NS-2 ya que posee doble lenguaje Java pero realmente usa Jacl que es una extensión de java (14).

S3 (project / Scalable Simulation Framework)
Simulador patrocinado por DAPRA capaz de soportar tanto lenguaje en C++ como Java es altamente escalable y permite prácticamente todos los protocolos de internet, está basado en 5 clases ( Entity, inchannel, outchannel, process y event).
La interacción con la simulación se hace atreves de DML.

NS-2 (Network Simulator 2)
Software de carácter libre implementado para la simulación de redes basado en eventos discretos, que surgió a finales de 1980 y cuya base es el simulador de redes ""REAL""; que tiene la capacidad de simular tanto protocolos unicast como multicast, con mayor uso en la investigación de redes móviles ad-hoc, también tiene una gran variedad de protocolos tanto en redes estructuras como en redes wireless (1).

CISCO PACKET TRACER
Software libre implementado para la simulación de redes tanto estructuradas como wireless, fue desarrollado por Cisco Systems, antes de llamarse Cisco Packet Tracer se conocía con el nombre de Routerswork.


Packet Tracer es un simulador que permite la realización y diseño de redes, así como la detección y corrección de errores en sistemas de comunicaciones, además cuenta con la posibilidad de analizar cada proceso que se realiza en el programa de acuerdo al modelo de las capas OSI que puedan intervenir en dicho proceso; razón por la cual es una herramienta muy útil para el proceso de aprendizaje del funcionamiento y configuración de redes (2).

PARA QUE SE UTILIZA PACKET TRACER

El PT está vinculado con las academias de networking de Cisco, es una aplicación que permite diseñar topologías de red con los mismos íconos que se usan en el currículo oficial. Más allá de poder diseñar las topologías, el PT permite configurar los equipos con casi todas las tecnologías que se mencionan en los currículos y observar cómo funcionan como si fueran equipos reales.

El PT permite acceder a cada dispositivo de la topología y configurarlo, bien sea por una interfaz gráfica muy intuitiva o por interfaz de línea de consola (CLI) como lo haríamos con equipos reales. El PT es suficientemente flexible, como para que los PC simulados en una topología tengan un escritorio, en el que se puede acceder a aplicaciones que usamos todos los días en la red: un navegador y una consola de comandos, adicionalmente las herramientas que usaremos ordinariamente: telnet, emulador de consola (como hyperterminal o minicom) y configuración de acceso telefónico, red inalámbrica y red alambrada. Existe también la posibilidad de agregar PC servidores que ejecutan servicios como HTTP, DNS y TFTP que podríamos conectar a la red para simular transacciones, digamos, desde los navegadores de los PCs clientes o para guardar configuraciones de equipos de red.


PARTES DE PACKET TRACER 


Parte 1
Quizás la parte más copada del programa, aquí tenemos los equipos de redes (routers,switches,hubs, pc,etc) y también encontramos los conectores(es el icono del rayo), es decir, los cables para que los equipos se puedan conectar(cable derecho, cruzado, serial, etc).
¿Cómo agrego un equipo? Fácil, con solo hacer un clic en la categoría que necesitamos, seleccionar el equipo y ,por último, darle clic en el fondo blanco.

Parte 2
En esta parte, encontramos los escenarios donde nos muestra información de los pdu’s enviados. También hay 2 iconos que los voy a explicar en detalle más abajo.

Parte 3
Acá encontramos herramientas para poder modificar la topología. Tenemos el cuadradito punteado con una flecha que sirve para arrastrar equipos, cambiar la interfaz a la cual se conectar los cables y muchas cosas más. Contamos también con el icono de la mano que nos sirve para mover la topología completa, está el icono del papel que sirve para poner anotaciones o colocar notas, es decir, si tenemos una topología bastante grosa lo que podemos hacer con esta herramienta es agregar información que nos sea útil para no perdernos entre tanto lío de equipos, direcciones ips, etc.
La cruz roja sirve para eliminar equipos y cables y por último los sobres. Hay 2, el primer sobre (icono de sobre cerrado) sirve para mandar un pdu simple y el otro cumple la misma función solamente que en éste último podemos configurarle el TTL, TOS y algunas otras cosas más. Recomiendo que cuando quieran mandar un PDU usen el simple (icono de sobre cerrado).

Parte 4
La ya conocida barra de menú, podemos hacer lo que hacemos con cualquier programa, guardar, salir, abrir, etc.

Parte 5
Como vemos en la imagen hay 2 espacios de trabajo, uno lógico y otro físico. El espacio lógico es donde nosotros armamos la topología, ya sea grande, chica, mediana y tenemos todo ahí. En cambio en el espacio físico, como es un programa que simula redes, podemos armar conexiones entre distintas zonas y lo que muestra es como seria en la vida real la red que estamos armando, básicamente se muestra eso. Generalmente se trabaja en el espacio lógico.

Parte 6
Simplemente en esta parte es donde vamos a armar nuestra topología.



COMO CREAR UNA LAN EN PACKET TRACER


1-Ejecutamos el programa Packet Tracer

2-Hacemos click en la casilla de dispositivos terminales
3-seleccionamos el dispositivo genérico y arrastramos el numero deseado a la pantalla

4-Hacemos click en la pestaña de conexiones y posteriormente en: "Escoger tipo de conexión automaticamente"

5-Hacemos click en el switch y arrastramos hasta enlazarlo con el dispositivo genérico.

6-Ahora tenemos que asignar IPs a nuestros dispositivos, para ello hacemos click en el dispositivo lo cual nos llevara a esta ventana.

7-Hacemos click en la pestaña,"Desktop" o "Escritorio"

8-Y posteriormente en "IP Configuration" o "Configuracion de IP"

9-Nuestra pantalla queda de la siguiente manera.

*Notese que los pequeños puntos naranjas que se encontraban junto al Switch cambiaron su color a verde, indicando que se ah establecido la conexión.


MODOS DE TRABAJO EN PACKET TRACER

El PT opera en modo de tiempo real y simulación, siendo tiempo real el que se muestra inicialmente. 

Modo Real
Tiempo real significa que los eventos se simulan exactamente como los ejecutarían los dispositivos reales, es decir, si se envía un paquete de un dispositivo a otro eso sucede en mili segundos y lo único que nosotros observamos en el espacio lógico es el piloto (punto verde) del enlace titilar. En éste modo de operación las cosas suceden casi inmediatamente y podemos hacer pruebas en tiempo real como lo haríamos con equipos reales.

Modo de Simulación
El modo de simulación es un modo especial en el que se pude observar cómo viajan los paquetes entre los dispositivos. Éste modo permite ver a un alto nivel de detalle lo que pasa en la red y controlar el nivel de detalle que se desea ver, por ejemplo, en una red ordinaria hay muchos protocolos que usan automáticamente los dispositivos para comunicarse información de control, y cada uno genera flujos de paquetes, por lo que con frecuencia es muy importante permitir que sólo los protocolos de interés se vean en una simulación. Obviamente también es importante controlar la velocidad a la que suceden los eventos de la red.

Modo de Topologia
La topología de red se define como una familia de comunicación usada por los computadores que conforman una red para intercambiar datos. En otras palabras, la forma en que está diseñada la red, sea en el plano físico o lógico. El concepto de red puede definirse como "conjunto de nodos interconectados". Un nodo es el punto en el que una curva se intercepta a sí misma. Lo que un nodo es concretamente, depende del tipo de redes a que nos refiramos.


TIPOS DE SWITCHES.


TIPOS DE MODEMS.



DISPOSITIVOS INALAMBRICOS.



DISPOSITIVOS TERMINALES.



DISPOSITIVOS ADICIONALES.





VENTAJAS Y DESVENTAJAS DEL USO DE PACKET TRACER

VENTAJAS
DESVENTAJAS
El enfoque pedagógico de este
simulador, hace que sea una
herramienta muy útil como
complemento de los fundamentos
teóricos sobre redes de
comunicaciones.
El programa posee una interfaz de
usuario muy fácil de manejar, e incluye
documentación y tutoriales sobre el
manejo del mismo.
Permite ver el desarrollo por capas del
proceso de transmisión y recepción de
paquetes de datos de acuerdo con el
modelo de referencia OSI.
Permite la simulación del protocolo de
enrutamiento RIP V2 y la ejecución del
protocolo STP y el protocolo SNMP
para realizar diagnósticos básicos a las
conexiones entre dispositivos del
modelo de la red.
Es un software propietario, y por ende
se debe pagar una licencia para
instalarlo.
Solo permite modelar redes en términos
de filtrado y retransmisión de paquetes.
No permite crear topologías de red que
involucren la implementación de
tecnologías diferentes a Ethernet; es
decir, que con este programa no se
pueden implementar simulaciones con
tecnologías de red como Frame Relay,
ATM, XDSL, Satelitales, telefonía
celular entre otras.
Ya que su enfoque es pedagógico, el
programa se considera de fidelidad
media para implementarse con fines
comerciales.

REGLAS DE INTERCONEXIÓN ENTRE DISPOSITIVOS DE PACKET TRACER

Para realizar una interconexión correcta debemos tener en cuenta las siguientes reglas:
Cable Recto:Siempre que conectemos dispositivos que funcionen en diferente capa del modelo OSI se debe utilizar cable recto (de PC a Switch o Hub, de Router a Switch).
Cable Cruzado: Siempre que conectemos dispositivos que funcionen en la misma capa del modelo OSI se debe utilizar cable cruzado (de PC a PC, de Switch/Hub a Switch/Hub, de Router a Router).

lunes, 22 de septiembre de 2014

TÉCNICAS DE TRANSMISIÓN DE DATOS EN REDES INALAMBRICAS

Satélite (microondas)
Internet por satélite, internet satelital o conexión a Internet vía satélite es un método de conexión a Internet utilizando como medio de enlace un satélite. Es un sistema recomendable de acceso en aquellos lugares donde no llega el cable o la telefonía, como zonas rurales o alejadas. En una ciudad constituye un sistema alternativo a los usuales, para evitar cuellos de botella debido a la saturación de las líneas convencionales y un ancho de banda limitado.


Ondas electromagnéticas
Modulación engloba el conjunto de técnicas que se usan para transportar información sobre una onda portadora, típicamente una onda sinusoidal. Estas técnicas permiten un mejor aprovechamiento del canal de comunicación lo que posibilita transmitir más información en forma simultánea además de mejorar la resistencia contra posibles ruidos e interferencias. Según la American National Standard for Telecommunications, la modulación es el proceso, o el resultado del proceso, de variar una característica de una onda portadora de acuerdo con una señal que transporta información. El propósito de la modulación es sobreponer señales en las ondas portadoras.


Infrarrojos

Los enlaces infrarrojos se encuentran limitados por el espacio y los obstáculos. El hecho de que la longitud de onda de los rayos infrarrojos sea tan pequeña (850-900 nm), hace que no pueda propagarse de la misma forma en que lo hacen las señales de radio.


TIPOS DE CABLES USADOS EN REDES ALAMBRICAS



Coaxial
El cable coaxial, coaxcable o coax, creado en la década de 1930, es un cable utilizado para transportar señales eléctricas de alta frecuencia que posee dos conductores concéntricos, uno central, llamado vivo, encargado de llevar la información, y uno exterior, de aspecto tubular, llamado malla, blindaje o trenza, que sirve como referencia de tierra y retorno de las corrientes. Entre ambos se encuentra una capa aislante llamada dieléctrico, de cuyas características dependerá principalmente la calidad del cable. Todo el conjunto suele estar protegido por una cubierta aislante (también denominada chaqueta exterior).



Par trenzado
El cable de par trenzado usado en telecomunicaciones en el que dos conductores eléctricos aislados son entrelazados para anular las interferencias de fuentes externas y diafonía de los cables opuestos.



Fibra óptica
La fibra óptica es un medio de transmisión, empleado habitualmente en redes de datos, consistente en un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED.

Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio y superiores a las de cable convencional. Son el medio de transmisión por excelencia, al ser inmune a las interferencias electromagnéticas, y también se utilizan para redes locales donde se necesite aprovechar las ventajas de la fibra óptica por sobre otros medios de transmisión.


TOPOLOGIAS DE REDES

Bus
Una topología de bus es multipunto. Un cable largo actúa como una red troncal que conecta todos los dispositivos en la red.

                            Topología en Bus

Los nodos se conectan al bus mediante cables de conexión (latiguillos) y sondas. Un cable de conexión es una conexión que va desde el dispositivo al cable principal. Una sonda es un conector que, o bien se conecta al cable principal, o se pincha en el cable para crear un contacto con el núcleo metálico.
Entre las ventajas de la topología de bus se incluye la sencillez de instalación. El cabletroncal puede tenderse por el camino más eficiente y, después, los nodos se pueden conectar al mismo mediante líneas de conexión de longitud variable. De esta forma se puede conseguir que un bus use menos cable que una malla, una estrella o una topología en árbol.
Ventajas:
Requiere menos cable que una topología estrella.
Es fácil conectar nuevos nodos a la red.
Desventajas:
Se requieren terminadores. 
Es difícil detectar el origen de un problema cuando toda la red "cae".
No se debe utilizar como única solución en un gran edificio. 
Toda la red se caería si hubiera una ruptura en el cable principal.

Anillo
En una topología en anillo cada dispositivo tiene una línea de conexión dedicada y punto a punto solamente con los dos dispositivos que están a sus lados. La señal pasa a lo largo del anillo en una dirección, o de dispositivo a dispositivo, hasta que alcanza su destino. Cada dispositivo del anillo incorpora un repetidor.

                          Topología en Anillo
Un anillo es relativamente fácil de instalar y reconfigurar. Cada dispositivo está enlazado solamente a sus vecinos inmediatos (bien fisicos o lógicos). Para añadir o quitar dispositivos, solamente hay que mover dos conexiones.
Las únicas restricciones están relacionadas con aspectos del medio fisico y el tráfico (máxima longitud del anillo y número de dispositivos). Además, los fallos se pueden aislar de forma sencilla. Generalmente, en un anillo hay una señal en circulación continuamente.
Ventajas:
Se trata de una arquitectura muy sólida, que pocas veces entra en conflictos con usuarios.
Desventajas:
La falla de una computadora altera el funcionamiento de toda lea red.
 Las distorsiones afectan a toda la red.

Topología en estrella
En la topología en estrella cada dispositivo solamente tiene un enlace punto a punto dedicado con el controlador central, habitualmente llamado concentrador. Los dispositivos no están directamente enlazados entre sí.
A diferencia de la topología en malla, la topología en estrella no permite el tráfico directo de dispositivos. El controlador actúa como un intercambiador: si un dispositivo quiere enviar datos a otro, envía los datos al controlador, que los retransmite al dispositivo final.


                                  Topología en Estrella

Una topología en estrella es más barata que una topología en malla. En una red de estrella, cada dispositivo necesita solamente un enlace y un puerto de entrada/salida para conectarse a cualquier número de dispositivos.
Este factor hace que también sea más fácil de instalar y reconfigurar. Además, es necesario instalar menos cables, y la conexión, desconexión y traslado de dispositivos afecta solamente a una conexión: la que existe entre el dispositivo y el concentrador.
Ventajas:
Posibilidad de desconectar elementos de red sin causar problemas. 
Facilidad para la detección de fallo y su reparación.
Gran facilidad de instalación.
Desventajas:
Un fallo en el concentrador provoca el aislamiento de todos los nodos a él conectados. 
Se han de comprar hubs o concentradores.
Requiere más cable que la topología de bus.

Topología en Árbol
La topología en árbol es una variante de la de estrella. Como en la estrella, los nodos del árbol están conectados a un concentrador central que controla el tráfico de la red. Sin embargo, no todos los dispositivos se conectan directamente al concentrador central. La mayoría de los dispositivos se conectan a un concentrador secundario que, a su vez, se conecta al concentrador central.

                              Topología en Árbol
El controlador central del árbol es un concentrador activo. Un concentrador activo contiene un repetidor, es decir, un dispositivo hardware que regenera los patrones de bits recibidos antes de retransmitidos.
Retransmitir las señales de esta forma amplifica su potencia e incrementa la distancia a la que puede viajar la señal. Los concentradores secundarios pueden ser activos o pasivos. Un concentrador pasivo proporciona solamente una conexión fisica entre los dispositivos conectados.
Ventajas:
Tiene nodos periféricos individuales (por ejemplo hojas) que requieren transmitir a y recibir de otro nodo solamente y no necesitan actuar como repetidores o regeneradores.
Desventajas:
Si falla un enlace que conecta con un nodo hoja, ese nodo hoja queda aislado; si falla un enlace con un nodo que no sea hoja, la sección entera queda aislada del resto.

Topología en Telaraña-Malla
En una topología en malla, cada dispositivo tiene un enlace punto a punto y dedicado con cualquier otro dispositivo. El término dedicado significa que el enlace conduce el tráfico únicaniente entre los dos dispositivos que conecta.

                               Topología en Malla
Por tanto, una red en malla completamente conectada necesita n(n-1)/2 canales fisicos para enlazar n dispositivos. Para acomodar tantos enlaces, cada dispositivo de la red debe tener suspuertos de entrada/salida (E/S).
Una malla ofrece varias ventajas sobre otras topologías de red. En primer lugar, el uso de los enlaces dedicados garantiza que cada conexión sólo debe transportar la carga de datos propia de los dispositivos conectados, eliminando el problema que surge cuando los enlaces son compartidos por varios dispositivos. En segundo lugar, una topología en malla es robusta. Si un enlace falla, no inhabilita todo el sistema.
Otra ventaja es la privacidad o la seguridad. Cuando un mensaje viaja a través de una línea dedicada, solamente lo ve el receptor adecuado. Las fronteras fisicas evitan que otros usuarios puedan tener acceso a los mensajes.

Ventajas:
Si la red de malla está completamente conectada, puede existir absolutamente ninguna interrupción en las comunicaciones.No requiere de un servidor o nodo central, con lo que se reduce el mantenimiento.
Desventajas:
El costo de la red puede aumentar en los casos en los que se implemente de forma alámbrica, la topología de red y las características de la misma implican el uso de más recursos.